X-Recipient: archive-cygwin AT delorie DOT com DomainKey-Signature: a=rsa-sha1; c=nofws; d=sourceware.org; h=list-id :list-unsubscribe:list-subscribe:list-archive:list-post :list-help:sender:to:from:subject:date:message-id:references :mime-version:content-type:content-transfer-encoding; q=dns; s= default; b=Bs5wYOUkO2wx5WJFy/2trugJoADjGTFDiQkmq3J68uLxRE9nycG/7 YSUjLfFjwWAvTxL7BK9A+rOPHrtlI62KVopyMrgLlIyZySkg3RIBV7jT3qq35RrK J27SiP2zGPCfAZbveDs/9S0rbQ60fzqAxpnjuGuzQKl60ampvZLls4= DKIM-Signature: v=1; a=rsa-sha1; c=relaxed; d=sourceware.org; h=list-id :list-unsubscribe:list-subscribe:list-archive:list-post :list-help:sender:to:from:subject:date:message-id:references :mime-version:content-type:content-transfer-encoding; s=default; bh=xZA5c3xFAnkGUFffDyS6h5q+4fE=; b=cBqm4+1XjIN/jsv8PqjflIaBcWlM qZGZB5TChFYjFyE0bHWKIhvUy38uNR4KQQosyuvq0R46L27hcqLrb3rd5wwkPZad wgaO5867YHgVcdn0bqgk+QbHCugy2HxXqdgevvd26GvOJMz+r/GMSulmjGfjrQB1 weN3mh99WQumLJU= Mailing-List: contact cygwin-help AT cygwin DOT com; run by ezmlm List-Id: List-Subscribe: List-Archive: List-Post: List-Help: , Sender: cygwin-owner AT cygwin DOT com Mail-Followup-To: cygwin AT cygwin DOT com Delivered-To: mailing list cygwin AT cygwin DOT com Authentication-Results: sourceware.org; auth=none X-Virus-Found: No X-Spam-SWARE-Status: No, score=-1.2 required=5.0 tests=BAYES_50,RCVD_IN_DNSWL_LOW,RP_MATCHES_RCVD,SPF_HELO_PASS,SPF_PASS autolearn=ham version=3.3.2 spammy=tony, Tony, Parallelization, parallelized X-HELO: plane.gmane.org To: cygwin AT cygwin DOT com From: Tony Kelman Subject: Re: Parallelization Date: Mon, 18 Jul 2016 05:38:36 +0000 (UTC) Lines: 19 Message-ID: References: Mime-Version: 1.0 Content-Type: text/plain; charset=us-ascii Content-Transfer-Encoding: 7bit User-Agent: Loom/3.14 (http://gmane.org/) X-IsSubscribed: yes Eliot Moss cs.umass.edu> writes: > True ... it also made me think of Python, which is designed to use > parallelized numpy (etc.) libraries, optimized for your platform. > Can use all the hardware threads on your machine, as well as make > good use of vector extensions such as AVX. A 64-bit (x86-64) > version will give best use of vector processing, in my > experience. > > Regards -- Eliot Moss numpy is only as parallel as the underlying BLAS/LAPACK library that it uses is. So if you're using Cygwin's openblas then you're in decent shape. But I don't think cv_adams spends much time (if any?) in BLAS/LAPACK dense linear algebra functions, I think it's mostly dominated by function evaluation time. -Tony -- Problem reports: http://cygwin.com/problems.html FAQ: http://cygwin.com/faq/ Documentation: http://cygwin.com/docs.html Unsubscribe info: http://cygwin.com/ml/#unsubscribe-simple