www.delorie.com/gnu/docs/binutils/bfd_45.html   search  
Buy GNU books!

Untitled Document

[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.4 typedef asection

Here is the section structure:

/* This structure is used for a comdat section, as in PE.  A comdat
   section is associated with a particular symbol.  When the linker
   sees a comdat section, it keeps only one of the sections with a
   given name and associated with a given symbol.  */

struct bfd_comdat_info
  /* The name of the symbol associated with a comdat section.  */
  const char *name;

  /* The local symbol table index of the symbol associated with a
     comdat section.  This is only meaningful to the object file format
     specific code; it is not an index into the list returned by
     bfd_canonicalize_symtab.  */
  long symbol;

typedef struct sec
  /* The name of the section; the name isn't a copy, the pointer is
     the same as that passed to bfd_make_section.  */
  const char *name;

  /* A unique sequence number.  */
  int id;

  /* Which section in the bfd; 0..n-1 as sections are created in a bfd.  */
  int index;

  /* The next section in the list belonging to the BFD, or NULL.  */
  struct sec *next;

  /* The field flags contains attributes of the section. Some
     flags are read in from the object file, and some are
     synthesized from other information.  */
  flagword flags;

#define SEC_NO_FLAGS   0x000

  /* Tells the OS to allocate space for this section when loading.
     This is clear for a section containing debug information only.  */
#define SEC_ALLOC      0x001

  /* Tells the OS to load the section from the file when loading.
     This is clear for a .bss section.  */
#define SEC_LOAD       0x002

  /* The section contains data still to be relocated, so there is
     some relocation information too.  */
#define SEC_RELOC      0x004

  /* ELF reserves 4 processor specific bits and 8 operating system
     specific bits in sh_flags; at present we can get away with just
     one in communicating between the assembler and BFD, but this
     isn't a good long-term solution.  */
#define SEC_ARCH_BIT_0 0x008

  /* A signal to the OS that the section contains read only data.  */
#define SEC_READONLY   0x010

  /* The section contains code only.  */
#define SEC_CODE       0x020

  /* The section contains data only.  */
#define SEC_DATA       0x040

  /* The section will reside in ROM.  */
#define SEC_ROM        0x080

  /* The section contains constructor information. This section
     type is used by the linker to create lists of constructors and
     destructors used by g++. When a back end sees a symbol
     which should be used in a constructor list, it creates a new
     section for the type of name (e.g., __CTOR_LIST__), attaches
     the symbol to it, and builds a relocation. To build the lists
     of constructors, all the linker has to do is catenate all the
     sections called __CTOR_LIST__ and relocate the data
     contained within - exactly the operations it would peform on
     standard data.  */
#define SEC_CONSTRUCTOR 0x100

  /* The section has contents - a data section could be
     SEC_ALLOC | SEC_HAS_CONTENTS; a debug section could be
#define SEC_HAS_CONTENTS 0x200

  /* An instruction to the linker to not output the section
     even if it has information which would normally be written.  */
#define SEC_NEVER_LOAD 0x400

  /* The section is a COFF shared library section.  This flag is
     only for the linker.  If this type of section appears in
     the input file, the linker must copy it to the output file
     without changing the vma or size.  FIXME: Although this
     was originally intended to be general, it really is COFF
     specific (and the flag was renamed to indicate this).  It
     might be cleaner to have some more general mechanism to
     allow the back end to control what the linker does with
     sections.  */

  /* The section contains thread local data.  */
#define SEC_THREAD_LOCAL 0x1000

  /* The section has GOT references.  This flag is only for the
     linker, and is currently only used by the elf32-hppa back end.
     It will be set if global offset table references were detected
     in this section, which indicate to the linker that the section
     contains PIC code, and must be handled specially when doing a
     static link.  */
#define SEC_HAS_GOT_REF 0x4000

  /* The section contains common symbols (symbols may be defined
     multiple times, the value of a symbol is the amount of
     space it requires, and the largest symbol value is the one
     used).  Most targets have exactly one of these (which we
     translate to bfd_com_section_ptr), but ECOFF has two.  */
#define SEC_IS_COMMON 0x8000

  /* The section contains only debugging information.  For
     example, this is set for ELF .debug and .stab sections.
     strip tests this flag to see if a section can be
     discarded.  */
#define SEC_DEBUGGING 0x10000

  /* The contents of this section are held in memory pointed to
     by the contents field.  This is checked by bfd_get_section_contents,
     and the data is retrieved from memory if appropriate.  */
#define SEC_IN_MEMORY 0x20000

  /* The contents of this section are to be excluded by the
     linker for executable and shared objects unless those
     objects are to be further relocated.  */
#define SEC_EXCLUDE 0x40000

  /* The contents of this section are to be sorted based on the sum of
     the symbol and addend values specified by the associated relocation
     entries.  Entries without associated relocation entries will be
     appended to the end of the section in an unspecified order.  */
#define SEC_SORT_ENTRIES 0x80000

  /* When linking, duplicate sections of the same name should be
     discarded, rather than being combined into a single section as
     is usually done.  This is similar to how common symbols are
     handled.  See SEC_LINK_DUPLICATES below.  */
#define SEC_LINK_ONCE 0x100000

  /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
     should handle duplicate sections.  */
#define SEC_LINK_DUPLICATES 0x600000

  /* This value for SEC_LINK_DUPLICATES means that duplicate
     sections with the same name should simply be discarded.  */

  /* This value for SEC_LINK_DUPLICATES means that the linker
     should warn if there are any duplicate sections, although
     it should still only link one copy.  */

  /* This value for SEC_LINK_DUPLICATES means that the linker
     should warn if any duplicate sections are a different size.  */

  /* This value for SEC_LINK_DUPLICATES means that the linker
     should warn if any duplicate sections contain different
     contents.  */

  /* This section was created by the linker as part of dynamic
     relocation or other arcane processing.  It is skipped when
     going through the first-pass output, trusting that someone
     else up the line will take care of it later.  */
#define SEC_LINKER_CREATED 0x800000

  /* This section should not be subject to garbage collection.  */
#define SEC_KEEP 0x1000000

  /* This section contains "short" data, and should be placed
     "near" the GP.  */
#define SEC_SMALL_DATA 0x2000000

  /* This section contains data which may be shared with other
     executables or shared objects.  */
#define SEC_SHARED 0x4000000

  /* When a section with this flag is being linked, then if the size of
     the input section is less than a page, it should not cross a page
     boundary.  If the size of the input section is one page or more, it
     should be aligned on a page boundary.  */
#define SEC_BLOCK 0x8000000

  /* Conditionally link this section; do not link if there are no
     references found to any symbol in the section.  */
#define SEC_CLINK 0x10000000

  /* Attempt to merge identical entities in the section.
     Entity size is given in the entsize field.  */
#define SEC_MERGE 0x20000000

  /* If given with SEC_MERGE, entities to merge are zero terminated
     strings where entsize specifies character size instead of fixed
     size entries.  */
#define SEC_STRINGS 0x40000000

  /* This section contains data about section groups.  */
#define SEC_GROUP 0x80000000

  /*  End of section flags.  */

  /* Some internal packed boolean fields.  */

  /* See the vma field.  */
  unsigned int user_set_vma : 1;

  /* Whether relocations have been processed.  */
  unsigned int reloc_done : 1;

  /* A mark flag used by some of the linker backends.  */
  unsigned int linker_mark : 1;

  /* Another mark flag used by some of the linker backends.  Set for
     output sections that have an input section.  */
  unsigned int linker_has_input : 1;

  /* A mark flag used by some linker backends for garbage collection.  */
  unsigned int gc_mark : 1;

  /* Used by the ELF code to mark sections which have been allocated
     to segments.  */
  unsigned int segment_mark : 1;

  /* End of internal packed boolean fields.  */

  /*  The virtual memory address of the section - where it will be
      at run time.  The symbols are relocated against this.  The
      user_set_vma flag is maintained by bfd; if it's not set, the
      backend can assign addresses (for example, in a.out, where
      the default address for .data is dependent on the specific
      target and various flags).  */
  bfd_vma vma;

  /*  The load address of the section - where it would be in a
      rom image; really only used for writing section header
      information.  */
  bfd_vma lma;

  /* The size of the section in octets, as it will be output.
     Contains a value even if the section has no contents (e.g., the
     size of .bss).  This will be filled in after relocation.  */
  bfd_size_type _cooked_size;

  /* The original size on disk of the section, in octets.  Normally this
     value is the same as the size, but if some relaxing has
     been done, then this value will be bigger.  */
  bfd_size_type _raw_size;

  /* If this section is going to be output, then this value is the
     offset in *bytes* into the output section of the first byte in the
     input section (byte ==> smallest addressable unit on the
     target).  In most cases, if this was going to start at the
     100th octet (8-bit quantity) in the output section, this value
     would be 100.  However, if the target byte size is 16 bits
     (bfd_octets_per_byte is "2"), this value would be 50.  */
  bfd_vma output_offset;

  /* The output section through which to map on output.  */
  struct sec *output_section;

  /* The alignment requirement of the section, as an exponent of 2 -
     e.g., 3 aligns to 2^3 (or 8).  */
  unsigned int alignment_power;

  /* If an input section, a pointer to a vector of relocation
     records for the data in this section.  */
  struct reloc_cache_entry *relocation;

  /* If an output section, a pointer to a vector of pointers to
     relocation records for the data in this section.  */
  struct reloc_cache_entry **orelocation;

  /* The number of relocation records in one of the above.  */
  unsigned reloc_count;

  /* Information below is back end specific - and not always used
     or updated.  */

  /* File position of section data.  */
  file_ptr filepos;

  /* File position of relocation info.  */
  file_ptr rel_filepos;

  /* File position of line data.  */
  file_ptr line_filepos;

  /* Pointer to data for applications.  */
  PTR userdata;

  /* If the SEC_IN_MEMORY flag is set, this points to the actual
     contents.  */
  unsigned char *contents;

  /* Attached line number information.  */
  alent *lineno;

  /* Number of line number records.  */
  unsigned int lineno_count;

  /* Entity size for merging purposes.  */
  unsigned int entsize;

  /* Optional information about a COMDAT entry; NULL if not COMDAT.  */
  struct bfd_comdat_info *comdat;

  /* When a section is being output, this value changes as more
     linenumbers are written out.  */
  file_ptr moving_line_filepos;

  /* What the section number is in the target world.  */
  int target_index;

  PTR used_by_bfd;

  /* If this is a constructor section then here is a list of the
     relocations created to relocate items within it.  */
  struct relent_chain *constructor_chain;

  /* The BFD which owns the section.  */
  bfd *owner;

  /* A symbol which points at this section only.  */
  struct symbol_cache_entry *symbol;
  struct symbol_cache_entry **symbol_ptr_ptr;

  struct bfd_link_order *link_order_head;
  struct bfd_link_order *link_order_tail;
} asection;

/* These sections are global, and are managed by BFD.  The application
   and target back end are not permitted to change the values in
   these sections.  New code should use the section_ptr macros rather
   than referring directly to the const sections.  The const sections
   may eventually vanish.  */

/* The absolute section.  */
extern const asection bfd_abs_section;
#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
/* Pointer to the undefined section.  */
extern const asection bfd_und_section;
#define bfd_und_section_ptr ((asection *) &bfd_und_section)
#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
/* Pointer to the common section.  */
extern const asection bfd_com_section;
#define bfd_com_section_ptr ((asection *) &bfd_com_section)
/* Pointer to the indirect section.  */
extern const asection bfd_ind_section;
#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)

#define bfd_is_const_section(SEC)              \
 (   ((SEC) == bfd_abs_section_ptr)            \
  || ((SEC) == bfd_und_section_ptr)            \
  || ((SEC) == bfd_com_section_ptr)            \
  || ((SEC) == bfd_ind_section_ptr))

extern const struct symbol_cache_entry * const bfd_abs_symbol;
extern const struct symbol_cache_entry * const bfd_com_symbol;
extern const struct symbol_cache_entry * const bfd_und_symbol;
extern const struct symbol_cache_entry * const bfd_ind_symbol;
#define bfd_get_section_size_before_reloc(section) \
     ((section)->reloc_done ? (abort (), (bfd_size_type) 1) \
                            : (section)->_raw_size)
#define bfd_get_section_size_after_reloc(section) \
     ((section)->reloc_done ? (section)->_cooked_size \
                            : (abort (), (bfd_size_type) 1))

/* Macros to handle insertion and deletion of a bfd's sections.  These
   only handle the list pointers, ie. do not adjust section_count,
   target_index etc.  */
#define bfd_section_list_remove(ABFD, PS) \
  do                                                   \
    {                                                  \
      asection **_ps = PS;                             \
      asection *_s = *_ps;                             \
      *_ps = _s->next;                                 \
      if (_s->next == NULL)                            \
        (ABFD)->section_tail = _ps;                    \
    }                                                  \
  while (0)
#define bfd_section_list_insert(ABFD, PS, S) \
  do                                                   \
    {                                                  \
      asection **_ps = PS;                             \
      asection *_s = S;                                \
      _s->next = *_ps;                                 \
      *_ps = _s;                                       \
      if (_s->next == NULL)                            \
        (ABFD)->section_tail = &_s->next;              \
    }                                                  \
  while (0)

[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

  webmaster     delorie software   privacy  
  Copyright 2003   by The Free Software Foundation     Updated Jun 2003