
Common Flash Interface (CFI)
and Command Sets
Application Note 646

April 2000

Revision Number: 292204-004

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 1999-2000

*Other brands and names are the property of their respective owners.

iii

AP-646

Contents
1.0 Introduction ..1

2.0 Benefits of CFI ...3

2.1 Upgrades...3
2.2 Second Sources ..3

3.0 How to Use CFI Effectively ...4

3.1 Read Query String...4
3.2 Read Electronic Databook Information..6
3.3 Read Vendor-Specific Extended Query Table ..9
3.4 Software Branch to Appropriate Routines ...11

4.0 How to Use Command Sets Effectively ..11

5.0 Conclusion ..11

Appendix A Memory Hueristics..12

A1 Memory Hueristics Flowchart ..12
A2 CFI Query Flowchart ...13
A3 Read JEDEC ID Flowchart..14

Appendix B Basic Command Set...15

B1 Clear Status Register Flowchart..15
B2 Read Array Flowchart..15
B3 Block Erase Flowchart...16
B4 Erase Suspend/Resume Flowchart...17
B5 Single Byte Program (Write) Flowchart ...17
B6 Full Status Check Flowchart..18

Appendix C Scaleable Command Set ..19

C1 Write to Buffer Flowchart...19
C2 Program (Write) Suspend/Resume Flowchart...20
C3 Block Lock Bit Set Flowchart...20
C4 Block Lock Bit Reset Flowchart...21

iv

AP-646

Revision History

Date of
Revision Number Description

-001 Original version

06/01/97 -002 Added ANSI ‘C’ code to Appendix A

12/01/97 -003 Removed routine codes from the Appendices

04/01/00 -004 Reformatted document

AP-646

1

1.0 Introduction

This application note defines Common Flash Interface (CFI), Basic Command Set (BCS), and
Scaleable Command Set (SCS), as well as discusses their benefits and details how best to use them.

Common Flash Interface (CFI) is a published, standardized data structure that may be read from a
flash memory device. CFI allows system software to query the installed device (on board
component, PC [PCMCIA] Card, or Miniature Card) to determine configurations, various
electrical and timing parameters, and functions supported by the device.

The Basic Command Set (BCS) is a group of commands that have been used for years on Intel’s
and other vendors’ legacy products. This command set is also commonly referred to as the 28F008,
or simply the 008 command set. These commands include Read Array, Read ID, Read Status
Register, Clear Status Register, Program (Write), Block Erase, Erase Suspend, and Confirm/
Resume. The BCS is the “Standard Command Set” used by Intel in its CFI implementations.

Scaleable Command Set (SCS) is the “Extended Command Set” that Intel uses to control the
functions of most CFI-enabled flash devices. CFI allows the vendor to specify a command set that
should be used with the component. SCS is the command set that will be used by Intel on most of
its CFI enabled devices. SCS includes all commands available in the BCS, as well as some new
advanced commands that have been designed to take advantage of Intel’s next generation
optimized flash devices. These new commands include Set and Clear Lock Bits, CFI Query, Write
to Buffer, Program Suspend, Status Configuration, and Full Chip Erase. With many new
capabilities being designed into flash products today, these new commands were necessary to take
full advantage of the improvements.

CFI is used to allow the system to learn how to interface to the flash device most optimally. The
BCS and SCS are used to then command the device to perform the desired flash functions.

2204_01

Figure 1. How CFI, SCS, and BCS Fit Together

Flash
Industry

CFICFI

Extended
Command
Set

Vendor
Specific
(Intel’s SCS)

Standard
Command
Set Vendor

Specific
(Intel’s BCS)

AP-646

2

2204_02

Figure 2. CFI Allows Easy Upgrades and Use of Second Sources

Removable
Media

Embedded
Products

Futu
re

Upgra
de

Compatibility among
removable media

Silicon updates
without software

changes

AP-646

3

2.0 Benefits of CFI

The two primary benefits of using CFI are ease of upgrading and second source availability. Both
are concerns when an OEM or end-user (the consumer) purchases a product.

2.1 Upgrades

In order to take advantage of increased densities (or speeds, etc.) on memory devices and cards, an
easy upgrade path is desirable. Care is generally taken to ensure that hardware footprints are pin-
for-pin compatible or that flexible layouts may be used when upgrading a product. However,
thought is seldom given to software compatibility. CFI allows many new and improved products to
be used in place of their older versions without modifications of system software.

Because CFI allows the system to learn about the features, parameters, and timings of a flash
device, the system can take full advantage of these improvements. For instance, if the timeout for a
block erase to occur was cut in half, the system software could take advantage of that fact by
changing its internal timers. Also, a 32-Mbit device can be replaced by a 64-Mbit device and vice
versa because the device can tell the system what size it is.

With CFI, when upgrading a flash memory design, it is no longer necessary to re-optimize low
level software drivers to take advantage of the new features. Simply program the system initially to
accept CFI enabled devices, and allow the software to upgrade itself.

2.2 Second Sources

Particularly in the card environment, second sourcing is a primary concern. Because the end-user
of a PC Card or Miniature Card could be a consumer, care must be taken to ensure compatibility
among all flash cards that may be installed into the same sockets. For instance, when purchasing a
replacement or spare memory card for their digital camera, consumers do not want to have to worry
that they can only purchase a certain vendor’s card or a particular version of what seems to be a
similar card.

This is analogous to a consumer purchasing floppy disks for their computer or film for their
camera. Any vendor’s product works. That is the goal of CFI—complete and simple interchange
between vendors in a card application. The hardware inside the PC Card or Miniature Card does
not have to operate identically; the software takes care of the differences as long as the devices are
CFI-compliant.

CFI allows the system to determine the manufacturer of the card, its operating parameters, its
configuration, and any special command codes that the card may accept. With this knowledge, the
system can optimize its use of the card by using appropriate timeout values, optimal voltages, and
commands necessary to use the card to its full advantage.

AP-646

4

3.0 How to Use CFI Effectively

To use CFI effectively, system software must be written to take advantage of the flexibility
provided by the specification. The software must be capable of modifying timeouts, adjusting to
different memory sizes, accommodating varying block erase characteristics, and branching to
vendor-specific code sections. The following paragraphs outline several steps which system
software must transition through to read a CFI-enabled device. Flowcharts are included in
Appendix A.

3.1 Read Query String

Not all devices installed into a flash memory socket will be CFI-enabled. To determine if a device
is CFI-capable, the system software must write a 98h to location 55h within the memory (see CFI
Query Flowchart included in Appendix A). The flash device may or may not have an address
sensitive query command; the Intel devices do not. The low-level driver, however, should supply
the 55h address even though the flash device may choose to ignore the address bus and enter the
query mode if 98h is on the data bus only. If three consecutive maximum device bus width reads
beginning at location 10h in the flash array return the ASCII equivalent “Q,” “R,” and “Y,” then the
device is CFI-compliant.

Although there are other configuration possibilities, there are currently three CFI array
configurations that are of primary interest. These configurations must be tested and accounted for
in the software. These configurations are:

• single chip operating in a x16 mode (16-bit data bus)—chips may be capable of 8-bit accesses,
but are operating only with 16-bit bus accesses

• two chips each capable of 8- and 16-bit data bus accesses, but each only operating in a x8
mode (8- bit data bus on each chip with a total array bus width of 16-bits)

• two chips each only capable of 8-bit data bus accesses operating only in a x8 mode (8-bit data
bus per chip with a total array bus width of 16 bits)

Each of these configurations are shown in Figure 3, “Possible Flash Array Configurations” on
page 5. Table 1, “CFI Query Read” on page 6 indicates the addressing necessary to read the CFI
query table for each of these configurations, along with some other possible device configurations.
The table also includes what the query data will look like to the host processor in byte or word
addressing. Note that the query data (ASCII “Q”, “R”, and “Y,” as well as the electronic databook
information discussed in the next section) may be doubled or even quadrupled depending on the
array configuration. The software must be able to determine the correct array configuration based
on the number of “Q”s returned to accurately calculate the array size and read and write to the array
properly. The CFI Query Flowchart is located in Appendix A. The QueryCFI routine heuristically
determines the configuration of the array, calculates the appropriate data, and indicates to the
higher level routines how to communicate with the CFI-enabled devices.

If the device does not respond with the “QRY” string, the device is not CFI-compliant and the
software must then attempt to read the device’s JEDEC ID. (See the Memory Heuristics Flowchart
included in Appendix A.) The software must write a 90h to the first location in the device. If the
device returns a Manufacturer’s ID and Component ID, the flash device may be accessed as it has
been in the past, based on the Manufacturer and Component ID. If the device does not return a
Manufacturer and Component ID, then the device is not a flash memory and other routines are
necessary to determine what type of device is installed. (See the Memory Heuristics Flowchart
included in Appendix A.)

AP-646

5

2204_03

Figure 3. Possible Flash Array Configurations

Chips are x8 capable onlyChips may be x16 only or x8/x16 capable

Single x 16 device (x16
capable device operating

in a 16-bit mode)

Paired x8/x16 devices
(two x8/x16 capable

devices operating in an
8-bit mode)

Paired x8 devices (two x8
only devices operating in

an 8-bit mode)

x16 or
x8/x16

capable
device

 16-bit
data bus

Lower 8
bits of
16-bit
data bus

Upper 8
bits of
16-bit
data bus

Lower 8
bits of
16-bit
data bus

Upper 8
bits of
16-bit
data bus

Flash Array Flash Array Flash Array

x8/x16
capable
device

x8/x16
capable
device

x8 only
capable
device

x8 only
capable
device

AP-646

6

3.2 Read Electronic Databook Information

In a CFI-enabled device, following the “QRY” string is a list of device specific parameters and
vendor-specific information–the “Electronic Databook.” Table 2, “CFI Query Identification
String” on page 7, Table 3, “System Interface Information” on page 8, and Table 4, “Flash
Geometry Information” on page 9 outline the data provided by the device during the CFI query.
Software routine QueryCFI (the flowchart is included in Appendix A) reads the following
information from the device:

NOTE:
1. The system must drive the lowest order addresses to access all the device’s array data when the device is

configured in x8 mode; therefore, word addressing where these lower addresses are not toggled by the
system is “Not Applicable” for x8-configured devices.

Table 1. CFI Query Read

Device Type
and Data Bus

Operating
Mode

Query Start Location
in Maximum Device

Buswidth Addresses

Query Data with Maximum
Device Buswidth Addressing

(“x” = ASCII equivalent)

Query Start
Address in

Bytes

Query Data With Byte
Addressing

x8 device
operating in
8-bit mode

10h
10h: 51h “Q”
11h: 52h “R”
12h: 59h “Y”

10h
10h: 51h “Q”
11h: 52h “R”
12h: 59h “Y”

two x8 devices
operating in
8-bit mode
(paired chip
configuration)

10h
10h: 0051h “Q”
11h: 0052h “R”
12h: 0059h “Y”

20h

20h: 51h “Q”
21h: 51h “Q”
22h: 52h “R”
23h: 52h “R”
24h: 59h “Y”
25h: 59h “Y”

x16 device
operating in
16-bit mode

10h
10h: 0051h “Q”
11h: 0052h “R”
12h: 0059h “Y”

20h

20h: 51h “Q”
21h: 00h null
22h: 52h “R”
23h: 00h null

x16 device
operating in
8-bit mode

N/A(1) N/A(1) 20h
20h: 51h “Q”
21h: 51h “Q”
22h: 52h “R”

two x16 devices
operating in
8-bit mode
(paired chip
configuration)

N/A(1) N/A(1) 40h

40h: 51h “Q”
41h: 51h “Q”
42h: 51h “Q”
43h: 51h “Q”
44h: 52h “R”
45h: 52h “R”

x32 device
operating in
32-bit mode

10h

10h: 00000051h “Q”

11h: 00000052h “R”

12h: 00000059h “Y”

40h

40h: 51h “Q”
41h: 00h null
42h: 00h null
43h: 00h null
44h: 52h “R”

x32 device
operating in
8-bit mode

N/A(1) N/A(1) 40h

40h: 51h “Q”
41h: 51h “Q”
42h: 51h “Q”
43h: 51h “Q”
44h: 52h “R”

AP-646

7

NOTES:
1. Offset is the location in memory when using maximum device bus width addressing.
2. The CFI specification allows for replacement of all or part of the standard query table contents. If the vendor

primary (or alternate) algorithm extended query table address (P or A) points to any address between 10h
and the end of Table 4, “Flash Geometry Information” on page 9, the standard query table contents from that
point on are assumed to be replaced by the information defined by the vendor primary (or alternate)
algorithm. Thus, some or all of the standard query may be replaced. For example, a vendor primary (or
alternate) algorithm extended query table address of 27h means that the standard device geometry definition
has been replaced by something which has been defined by the vendor. The System Interface information at
locations 1Bh to 26h may be assumed valid, but the ultimate definition must be described by the particular
vendor algorithm. If the vendor primary (or alternate) algorithm extended query table address points to an
address beyond the end of Table 4, “Flash Geometry Information,” a new table of data is included at that
address. The contents of this table are defined by the corresponding vendor primary (or alternate) algorithm.

Table 2. CFI Query Identification String

Offset Length (bytes) Description

10h 03h Query-unique ASCII string “QRY“

13h 02h
Primary Vendor Command Set and Control Interface ID Code

16-bit ID code defining specific Vendor-specified algorithm

[Refer to CFI Publication 100 for definition of the ID codes]

15h 02h value = P
Address for Primary Algorithm extended Query table

Note: Address 0000h means that no extended table exists

17h 02h

Alternate Vendor Command Set and Control Interface ID Code
second vendor-specified algorithm supported by the device

[Refer to CFI Publication 100 for definition of the ID codes]

Note: ID Code = 0000h means that no alternate algorithm is employed

19h 02h value = A
Address for Alternate Algorithm extended Query table

Note: Address 0000h means that no alternate extended table exists

AP-646

8

Table 3. System Interface Information

Offset Length
(bytes) Description

1Bh 01h
VCC Logic Supply Minimum Program/Erase voltage
bits 7–4 BCD value in volts
bits 3–0 BCD value in 100 millivolts

1Ch 01h
VCC Logic Supply Maximum Program/Erase voltage
bits 7–4 BCD value in volts
bits 3–0 BCD value in 100 millivolts

1Dh 01h

VPP [Programming] Supply Maximum Program/Erase voltage
bits 7–4 HEX value in volts
bits 3–0 BCD value in 100 millivolts

Note: This value must be 0000h if no VPP pin is present

1Eh 01h

VPP [Programming] Supply Maximum Program/Erase voltage
bits 7–4 HEX value in volts
bits 3–0 BCD value in 100 millivolts

Note: This value must be 0000h if no VPP pin is present

1Fh 01h Typical timeout per single byte/word write (buffer write count = 1), 2n µs

20h 01h Typical timeout for maximum-size buffer write, 2n µs
(if supported; 00h = not supported)

21h 01h Typical timeout per individual block erase, 2n ms

22h 01h Typical timeout for full chip erase, 2n ms (if supported; 00h = not supported)

23h 01h Maximum timeout for byte/word write, 2n times typical (offset 1Fh)

24h 01h Maximum timeout for buffer write, 2n times typical (offset 20h)
(00h = not supported)

25h 01h Maximum timeout per individual block erase, 2n times typical (offset 21h)

26h 01h Maximum timeout for chip erase, 2n times typical (offset 22h)
(00h = not supported)

AP-646

9

3.3 Read Vendor-Specific Extended Query Table

Using data from addresses 15h (address for primary algorithm extended query table) and possibly
19h (address for alternate algorithm extended query table), the system software can read more
specific information about the flash device (see the CFI Query Flowchart, included in
Appendix A). Each vendor will have specific data that should be read from the extended query
table. Intel defines this data with its SCS. Also, each vendor may locate this table in a different
location, so it is important that the software reads the location of the tables from offsets 15h and
19h to determine where (if at all) the extended query data is stored. The Vendor Command Set
definition (Intel’s SCS) will indicate what data is stored in the extended query table. Table 5, “Intel
Primary Algorithm Extended Query Table” on page 10 shows the extended table for the Intel
devices implementing CFI (all devices implementing CFI will use the extended query table
regardless of the command set being used).

Table 4. Flash Geometry Information

Offset Length
(bytes) Description

27h 01h Device Size = 2n in number of bytes.

28h 02h Flash Device Interface description [Refer to CFI Publication 100]

2Ah 02h Maximum number of bytes in buffer write = 2n.

2Ch 01h

Number of erase block regions within device
bits 7–0 = x = number of erase block regions

Notes:

1. x = 0 means no erase blocking, i.e., the device erases at once in “bulk.”

2. x specifies the number of regions within the device containing one or more contiguous erase blocks
of the same size. For example, a 128-KB device (1 Mb) having blocking of 16-KB, 8-KB, four 2-KB,
two 16-KB, and one 64-KB is considered to have five erase block regions. Even though two regions
both contain 16-KB blocks, the fact that they are not contiguous means they are separate erase block
regions.

3. By definition, symmetrically-blocked devices have only one blocking region.

2Dh 04h

Erase block region information

bits 31–16 = z , where the erase block(s) within this region are (z) times 256 bytes in size.
The value z = 0 is used for 128-byte block size.
e.g., for 64-KB block size, z = 0100h = 256 => 256 * 256 = 64K

bits 15– 0 = y , where y+1 = number of erase blocks of identical size within the erase block region, e.g.,:
y = D15-D0 = FFFFh => y+1 = 64K blocks [maximum number]
y = 0 means no blocking (# blocks = y+1 = “1 block”)

Note:
y = 0 value must be used with # of block regions of one as indicated by (x) = 0

31h to
(k-1)h

04h

per
entry

Additional erase block region information, 4 bytes per region

Notes:

1. The total number of blocks multiplied by individual block size must add up to the device size.

2. The address K is next available query address at end of the device geometry structure. It is the first
possible starting address of the optional vendor-specific query table(s) (i.e., Address “P,” the primary
vendor-specific extended query table offset, must be ≥ k to not overwrite the existing tables). See
note 2 under Table 2, “CFI Query Identification String” on page 7 for more information.

AP-646

10

Table 5. Intel Primary Algorithm Extended Query Table

Offset Length
(bytes) Description

(P + 0)h
(P + 1)h
(P + 2)h

03h Primary extended Query table unique ASCII string “PRI”

(P +3)h 01h Major version number, ASCII

(P +4)h 01h Minor version number, ASCII

(P +5)h

(P +6)h

(P +7)h

(P +8)h

04h

Optional Feature & Command Support (1=yes, 0=no)
bits 9-31 are reserved; undefined bits are “0”. If bit 31 is “1,” then another 31-bit field of
optional features follows at the end of the bit-30 field.

1 = Yes, supported 0 = No, not supported.

bit 0 Chip erase supported

bit 1 Suspend erase supported

bit 2 Suspend program supported

bit 3 Legacy lock/unlock supported

bit 4 Queued erase supported

bit 5 Instant individual block locking supported

bit 6 Protection bits supported

bit 7 Page-mode read supported

bit 8 Synchronous read supported

(P +9)h 01h

Supported functions after suspend

Read array, status, and query are always supported during suspended erase or program
operation. This field defines other operations supported.

bit 0 Program supported after Erase Suspend (1=yes, 0=no)
bits 1–7 Reserved for future use; undefined bits should be “0”

(P +A)h
(P + B)h 02h

Block status register mask

Defines which bits in the block status register section of query are implemented.
bit 0 Block status register lock-bit [BSR.0] active (1=yes, 0=no)
bit 1 Block status register valid bit [BSR.1] active (1=yes, 0=no)
bits 2–15 Reserved for future use; undefined bits should be “0”

(P +C)h 01h
VCC logic supply optimum program/erase voltage (highest performance)

bits 7–4 BCD value in volts
bits 3–0 BCD value in 100 millivolts

(P +D)h 01h

VPP [programming] supply optimum program/erase voltage
bits 7–4 HEX value in volts
bits 3–0 BCD value in 100 millivolts

Note: This value must be 0000h if no Vpp pin is present

(P +E)h reserved Reserved for future versions of the SCS Specification

AP-646

11

3.4 Software Branch to Appropriate Routines

Using the information read from location 13h (Primary Vendor Command Set and Control
Interface ID code) and possibly from 17h (Alternate Vendor Command Set and Control Interface
ID Code), the system determines which set(s) of commands are recognizable by the flash device.
Every vendor has defined at least one set of commands that their flash devices accept. Any
commands other than those defined will either be rejected or cause unexpected behavior and
should therefore be avoided.

Intel has two such sets of commands defined, BCS (Basic Command Set) and SCS (Scaleable
Command Set). SCS includes all of the BCS commands plus some new enhanced ones. The low
level reference code provided by Intel includes both of these command sets. By using this reference
code, current and future flash devices may be controlled using the same system software drivers.

4.0 How to Use Command Sets Effectively

Flowcharts for most of the driver software routines necessary to implement the Basic and Scaleable
Command Sets are located in Appendix B and Appendix C respectively. All of the reference codes
may be downloaded from the Intel web site from the Electronic Tools Catalog (ETC). The ETC can
be accessed from the Intel Developer’s site from:

http://developer.intel.com/design/flash/swtools/etc.htm

Link to the ETC: Flash Memory components set “Tool Type” to “Software-Templates” and select
the button “find my selection” from the list select the common flash interface, or CFI entry. If all
works well, it can be directly linked at:

http://amber.intel.com/scripts-toolcat/listtools.asp?pid=4582&cid=683&pfamily=

To ensure compatibility with future CFI compliant devices, all functions of the reference code
should be included in a design.

5.0 Conclusion

CFI and SCS have been created to allow a system designer the flexibility to design products now
that can use both current and future flash memory devices, as well as the security of knowing that
second source products may be used without system software modifications.

AP-646

12

Appendix A Memory Hueristics

A1 Memory Hueristics Flowchart

Read and Store Data from
Device Address 0

Start

Issue Read JEDEC ID
Write 90h to Address 0h

Data =
“QRY”?

Issue CFI Query
Write 98h to Address 55h

Read CFI Parameters from
Device (See CFI Query)

Data at 0
= 90h?

Restore Original Data

Return, SRAM Device

Return, CFI Device

Read
IDs?

Issue AMD Read JEDEC ID,
Write AA55h to Address 0h

Read
IDs?

Yes

No

No

No

Yes

Yes

Yes

Load Software Routine
Addresses from Tables

Return, ROM Device

No

Determine Size of RAM Load Software Routine
Addresses from Tables

Read JEDEC parameters from
System Table

(See JEDEC Query)
Return, JEDEC Flash Device

AP-646

13

A2 CFI Query Flowchart

Issue CFI Query,
to address 55h

Return, CFI Device

Start

Bus
Operation

Command Comments

Write CFI Query Data = 98h
Addr = 55h

Read ASCII Q, R, and Y
Read Block Size
Read Number of Erase Regions
Read Device Size
Read Max Write Buffer Size
Read Max and Typical Voltages and

Timeouts
Read Address of Extended Table
Read Features Supported
Write CFI Query Data = 98h

Addr = 55h
Read ASCII Q, R, Y
Write Read Array Data = FFh

Addr =X

Read Number of Erase Regions

Read Device Size

Paired

x8?

Read Max Write Buffer Size

Read Max and Typical
Voltages and Timeouts

Read Address of Extended
Query Table

Determine Features Supported
by Device

Map to Next Flash Device

Read Erase Block Size

Return, Non-CFI Device

No

Yes

Paired

x8/x16?

Single

x16?

No No

YesYes

Data =
QRY?

Issue CFI Query Command to
Address 55h

Data =
QRY? Put Device into Read Array

Mode, Write FFh

Put Device into Read Array
Mode, Write FFh

No

Yes

No

Yes

AP-646

14

A3 Read JEDEC ID Flowchart

Return, JEDEC Flash Device

Load geometric parameters from
Software Tables

Load Software Routine
Addresses from Tables

Map in Next Flash Device

Return, Unknown Device

JEDEC ID
in Table?

JEDEC ID?

Issue Read JEDEC ID
Command (90h)

JEDEC ID?
Issue Read Array Command

(FFh)

Issue Read Array Command
(FFh)

Issue Read ID,
Write 90h to Address 0

Start Bus
Operation

Command Comments

Write Read ID Data = 90h
Addr = 0

Read Data = Manufacturer ID
Addr = 0

Read Data = Device ID
Addr = 1

Write Read ID Data = 90h
Addr = 0

Write Read Array Data = FFh
Addr = X

Read Location 0 and 1
in Flash Array (Manufacturer

and Device ID)

AP-646

15

Appendix B Basic Command Set

B1 Clear Status Register Flowchart

B2 Read Array Flowchart

Issue Clear SR Command
Write 50H

Status Register Cleared

Start Bus
Operation

Command Comments

Write Clear Status
Register

Data = 50h
Addr = X

Issue Read Array
Write FFh

Return, Data Read

Start Bus
Operation

Command Comments

Write Read Array Data = FFh
Addr = Address to read

Standby Check SR.7
1 = WSM ready
0 = WSM busy

Read Read array locations

Read Array Data

Done
Reading?

No

Yes

Verify Write Size < Device Size

Read Status Register

SR.7 = ?

Call Suspend Routine

1

0

Need to
Resume?

Call Resume Routine

Return, Data Read

No

Yes

AP-646

16

B3 Block Erase Flowchart

Device
Supports
Queuing?

No

Yes

Set Timeout

Issue Block Queue Erase
Command 28h and Block

Address

Start

Read Extended Status Register

Is Queue
Available?

XSR.7=

Erase
Block

Timeout?

No

= 0, No

= 1, Yes

Another
Block

Erase?

Issue Block Queue Erase
Command 28h and Block

Address

Read Extended Status Register

Is Queue
Available?

XSR.7=

= 0, No

= 1, Yes

Write Confirm D0h and Block
Address

No

Yes

Another
Block

Erase?

Yes

No

Read Status Register

SR.7= ?

Full Status Check if Desired

Erase Flash Block(s)
Complete

Issue Single Block Erase
Command 20h and Block

Address

Write Confirm D0h and Block
Address

Suspend
Erase
Loop

0

1

Bus
Operation

Command Comments

Write Erase Block Data = 28h or 20h
Addr = Block Address

Read XSR.7 = valid
Addr = X

Standby Check XSR.7
1 = Erase queue available
0 = No Erase queue available

Write Erase Block Data = 28h
Addr = Block Address

Read SR.7 = valid; SR.6-0 = X
CE# and OE# low updates SR
Addr = X

Standby Check XSR.7
1 = Erase queue available
0 = No erase queue available

Write
(Note 1)

Erase
Confirm

Data = D0h
Addr = X

Read Status Register data
CE# and OE# low updates SR
Addr = X

Standby Check SR.7
1 = WSM ready
 0 = WSM busy

1. The Erase Confirm byte must follow Erase setup when the
erase queue status (XSR.7) = 0.
Full status check can be done after all Erase and Program
sequences complete. Write FFh after the last operation to
reset the device to read array mode.

Yes

AP-646

17

B4 Erase Suspend/Resume Flowchart

B5 Single Byte Program (Write) Flowchart

SR.7 =
0

1

Read
Status Register

Issue Suspend Command
Write B0H

Erase Resumed

Start

SR.6 =
0

1

Erase Complete

Done?
No

Yes

Read Array Data,
Read SR, or Write Data

Issue Read or Write
Command

Issue Resume command,
Write D0h

Return, Nothing to Suspend

Issue Read Command,
Write FFh

Bus
Operation

Command Comments

Write Erase
Suspend

Data = B0h
Addr = X

Read SR.7=valid; SR.6-0=X
CE# & OE# low updates SR
Addr = X

Standby Check SR.7
1 = WSM ready
0 = WSM busy

Standby Check SR.6
1 = Erase suspended
0 = Erase in progress or complete

Write Read Array,
Read SR, or

Write

Data = FFh
Addr = X

Read/Write Read/Write array locations other
than those being erased or Read SR

Write Resume Data = D0h
Addr = X

SR.7 =
0

1

Write Data to Address

Issue Program Command, 40h
or 10h and Address

Start

Read
Status Register

Full Status Check if Desired

Byte / Word Program
Complete

Bus
Operation

Command Comments

Write Setup Byte /
Word
Program

Data = 40h or 10h
Addr = Location to Be Programmed

Write Byte / Word
Program

Data = Data to Be Programmed
Addr = Location to be Programmed

Read Status Register Data
Standby Check SR.7

1 = WSM Ready
0 = WSM Busy

Repeat for subsequent program operations.
Full status register check can be done after each program
operation or after a sequence of Programming.
Write FFh after the last program operation to place the device in
read array mode.

AP-646

18

B6 Full Status Check Flowchart

Start

SR.1 =

0

1

SR.2 =

0

1

SR.4 =

0

1

SR.3 =

0

1

Device Protect Error

Write Is Suspended

Voltage Range Error

Write or Block Lock Bit Set
Error

Bus
Operation

Command Comments

Standby Check SR.3
1 = Programming Voltage Error Detect

Standby Check SR.1
1 = Device Protect Detect

Standby Check SR.4,5
Both 1 = Command Sequence Error

Standby Check SR.5
1 = Clear Block Lock-Bits Error

SR.5, SR.4, SR.3, and SR.1 are only cleared by the Clear Status
 Register command.
If error is detected, clear the status register before attempting retry
 or other error recovery.

SR.5 =
1

0

Clear Block Lock Bit or Erase
Error

SR.6 =
1

0

Erase Suspended

SR.4, 5 =
1

0

Command Sequence Error

Read Status Register

Return, Status Checked

AP-646

19

Appendix C Scaleable Command Set

C1 Write to Buffer Flowchart

XSR.7 =

1

Issue Write Command E8h and
Block Address

Set Timeout

Start

Read Extended Status Register

Write Buffer
Timeout?

0

No

Write Buffer Data and Start
Address

Write Word or Byte Count and
Block Address

X = 0

X = N ?

Abort Buffer
Write

Command?

No

X = X + 1

Write Next Buffer Data and
Device Address

Buffer Write to Flash Confirm
D0h

No

Yes

Write to Another Block Address

Buffer Write to Flash Aborted

Another
Buffer
Write?

Yes

No

Bus
Operation

Command Comments

Write Write to
Buffer

Data = E8h
Addr = Block Address

Read XSR.7 = valid; XSR.6-0 = X;
Addr = X

Standby Check XSR.7
1 = Write buffer ready
0 = No write buffer ready

Write
(Notes 1,2)

Data = N = word/byte count
N = 0 corresponds to count = 1
Addr = Block Address

Write
(Notes 3,4)

Data = write buffer data
Addr = device address

Write
(Notes 5.6)

Data = write buffer data
Addr = device address

Write Write
Confirm

Data - D0h
Addr = X

Read Status Register Data
CE# and OE# low updates SR
Addr = X

Standby Check SR.7
1 = WSM ready
0 = WSM busy

1. Byte/word count values on DQ0-7 are loaded into the count register.
2. The device now outputs the status register when read (XSR is no longer
available).
3. Write Buffer contents will be programmed at the device start address or
destination flash address.
4. Align the start address on a Write Buffer boundary for maximum
programming performance.
5. The device aborts the Write to Buffer command if the current address is
outside of the original block address.
6. The status register indicates an “improper command sequence” if the
Write to Buffer command is aborted. Follow this with a Clear Status
Register command.

Full status check can be done after all Erase and Write sequences
complete. Write FFh after the last operation to reset the device to read
array mode.

Issue Read Status Command

Read Status Register

SR.7 =
0

1

Full Status Check if Desired

Buffer Write to Flash
Complete

Suspend
Write Loop

Yes

Yes

AP-646

20

C2 Program (Write) Suspend/Resume Flowchart

C3 Block Lock Bit Set Flowchart

SR.7 =
0

1

Read
Status Register

Issue Suspend Command
Write B0h

Write Resumed

Start

SR.2 =
0

1

Write Complete

Done
Reading?

No

Yes

Read
Array Data

Issue Read Command
Write FFh

Issue Resume command
Write D0h

Return, Nothing to Suspend

Issue Read Command
Write FFh

Bus
Operation

Command Comments

Write Write Suspend Data = B0h
Addr = X

Read SR.7=valid; SR.6-0=X
CE# & OE# low updates SR
Addr = X

Standby Check SR.7
1 = WSM ready
0 = WSM busy

Standby Check SR.2
1 = Write suspended
0 = Write complete

Write Read Array Data = FFh
Addr = X

Read Read array locations other than
those being written

Write Resume Data = D0h
Addr = X

Read
Status Register

Write 60h,
Block Address

Start

SR.7 =
0

1

Issue Read Command
Write FFh

Write 01h,
Block Address

Set Lock-Bit
Complete

Bus
Operation

Command Comments

Write Set Block Lock-Bit
Setup

Data = 60h
Addr = Block Address (Block)

Write Set Block
Lock-Bit Confirm

Data = 01h
Addr = Block Address (Block)

Read Status Register Data

Standby Check SR.7
1 = WSM Ready
0 = WSM Busy

Repeat for subsequent lock-bit set operations.
Full status check can be done after each lock-bit set operation
 or after a sequence of lock-bit set operations.
Write FFh after the last lock-bit set operation to place device in
 read array mode.

Full Status Check if Desired

AP-646

21

C4 Block Lock Bit Reset Flowchart

Read Status
Register

Write 60h

Start

SR.7 =
0

1

Full Status
Check if Desired

Write D0

Clear Block Lock-Bits
Complete

Bus
Operation

Command Comments

Write Clear Block
Lock-Bits Setup

Data = 60h
Addr = X

Write Clear Block
Lock-Bit Confirm

Data = DOh
Addr = X

Read Status Register Data

Standby Check SR.7
1 = WSM Ready
0 = WSM Busy

Write FFh after the last lock-bit set operation to place device in
 read array mode.

	Title Page
	Contents
	Revision History
	1.0 Introduction
	2.0 Benefits of CFI
	2.1 Upgrades
	2.2 Second Sources

	3.0 How to Use CFI Effectively
	3.1 Read Query String
	3.2 Read Electronic Databook Information
	3.3 Read Vendor-Specific Extended Query Table
	3.4 Software Branch to Appropriate Routines

	4.0 How to Use Command Sets Effectively
	5.0 Conclusion
	Appendix A Memory Hueristics
	A1 Memory Hueristics Flowchart
	A2 CFI Query Flowchart
	A3 Read JEDEC ID Flowchart

	Appendix B Basic Command Set
	B1 Clear Status Register Flowchart
	B2 Read Array Flowchart
	B3 Block Erase Flowchart
	B4 Erase Suspend/Resume Flowchart
	B5 Single Byte Program (Write) Flowchart
	B6 Full Status Check Flowchart

	Appendix C Scaleable Command Set
	C1 Write to Buffer Flowchart
	C2 Program (Write) Suspend/Resume Flowchart
	C3 Block Lock Bit Set Flowchart
	C4 Block Lock Bit Reset Flowchart

	Figures
	Figure 1. How CFI, SCS, and BCS Fit Together
	Figure 2. CFI Allows Easy Upgrades and Use of Second Sources
	Figure 3. Possible Flash Array Configurations

	Tables
	Table 1. CFI Query Read
	Table 2. CFI Query Identification String
	Table 3. System Interface Information
	Table 4. Flash Geometry Information
	Table 5. Intel Primary Algorithm Extended Query Table

